Non-local conditioning of variation: Evidence and implications

Laurel MacKenzie and Meredith Tamminga
University of Manchester
University of Pennsylvania

NWAV 41 – Indiana University October 28, 2012

Overview

How are variable phenomena represented in the linguistic systems of individuals?

Overview

How are variable phenomena represented in the linguistic systems of individuals?

Similarity of variable processes to categorical rules — variation inside the grammar

Overview

How are variable phenomena represented in the linguistic systems of individuals?

Similarity of variable processes to categorical rules — variation inside the grammar

Dissimilarity of variable processes to categorical rules — variation outside the grammar

Inherent variability & variable rules inherent variability

Inherent variability & variable rules

inherent variability

"the hypothesis that the human language faculty necessarily accommodates and generates variation, and that the workings of grammar have a quantitative, noncategorical, and nondeterministic component"

Guy & Boberg (1997:149), paraphrasing WLH

Inherent variability & variable rules

inherent variability

"the hypothesis that the human language faculty necessarily accommodates and generates variation, and that the workings of grammar have a quantitative, noncategorical, and nondeterministic component"

Guy & Boberg (1997:149), paraphrasing WLH

variable rules

Inherent variability & variable rules

inherent variability

"the hypothesis that the human language faculty necessarily accommodates and generates variation, and that the workings of grammar have a quantitative, noncategorical, and nondeterministic component"

Guy & Boberg (1997:149), paraphrasing WLH

variable rules

"enlargement of the concept 'rule of grammar" Labov (1969:737)

Guy & Boberg's proposal:

"a unified probabilistic grammar that accounts for both" categorical and probabilistic alternations (p. 150)

Guy & Boberg's proposal:

"a unified probabilistic grammar that accounts for both" categorical and probabilistic alternations (p. 150)

Their motivation:

conditions on variable *t/d*-deletion resemble the effects of the Obligatory Contour Principle

deletion rate: /nt/ > /st/ = /pt/ > /ft/ > /lt/

phonological similarity to /t/

Guy's interpretation of this finding:

Guy's interpretation of this finding:

Separating variation (performance) from grammar (competence) would necessitate two separate versions of the OCP.

Guy's interpretation of this finding:

Separating variation (performance) from grammar (competence) would necessitate two separate versions of the OCP.

It is likely that many constraints on categorical processes would have "separate but equal performance twin[s]" in this way.

(Guy 1997:134)

Guy's interpretation of this finding:

Separating variation (performance) from grammar (competence) would necessitate two separate versions of the OCP.

It is likely that many constraints on categorical processes would have "separate but equal performance twin[s]" in this way.

(Guy 1997:134)

This would result in "considerable duplication of formal machinery." (Coetzee & Pater 2011:406)

"...the prospects of variation in mainstream generative phonology have changed dramatically. It now occupies a central place in the study of phonology, and to some extent dictates the architecture of phonological grammar" (Coetzee & Kawahara 2012)

"grammatical overreach":

"if these purely grammatical models are accounting nearly perfectly for the data, then grammar is doing more than its fair share"

(Coetzee & Kawahara 2010)

"grammatical overreach":

"if these purely grammatical models are accounting nearly perfectly for the data, then grammar is doing more than its fair share"

(Coetzee & Kawahara 2010)

They consider the role of frequency; we pursue two other cases of extragrammatical variability:

"grammatical overreach":

"if these purely grammatical models are accounting nearly perfectly for the data, then grammar is doing more than its fair share"

(Coetzee & Kawahara 2010)

They consider the role of frequency; we pursue two other cases of extragrammatical variability:

Subject length effects

"grammatical overreach":

"if these purely grammatical models are accounting nearly perfectly for the data, then grammar is doing more than its fair share"

(Coetzee & Kawahara 2010)

They consider the role of frequency; we pursue two other cases of extragrammatical variability:

- Subject length effects
- Persistence effects

```
is
```

```
Yeah, Salzburg's nice. Austria's nice. Europe is nice! (sw_1151)
```

```
Yeah, Salzburg's nice. Austria's nice.

Europe is nice! (sw_1151)

has

Oh, I'm sure it's been done. I'm sure it has been done. (sw_1060)
```

```
İS
  Yeah, Salzburg's nice. Austria's nice.
  Europe is nice! (sw 1151)
has
  Oh, I'm sure it's been done. I'm sure it has
  been done. (sw 1060)
will
  If I walk, it'll be ten degrees warmer, but it
  will last twenty minutes. (sw 1146)
```

```
İS
  Yeah, Salzburg's nice. Austria's nice.
  Europe is nice! (sw_1151)
has
  Oh, I'm sure it's been done. I'm sure it has
  been done. (sw 1060)
will
  If I walk, it'll be ten degrees warmer, but it
  will last twenty minutes. (sw 1146)
```

• The Switchboard corpus (Godfrey et al., 1992)

- The Switchboard corpus (Godfrey et al., 1992)
- The Fisher corpus (Cieri et al., 2004)

- The Switchboard corpus (Godfrey et al., 1992)
- The Fisher corpus (Cieri et al., 2004)
 - 5-minute telephone conversations between strangers on a given topic

- The Switchboard corpus (Godfrey et al., 1992)
- The Fisher corpus (Cieri et al., 2004)
 - 5-minute telephone conversations between strangers on a given topic
- The Philadelphia Neighborhood Corpus (Labov & Rosenfelder, 2011)

- The Switchboard corpus (Godfrey et al., 1992)
- The Fisher corpus (Cieri et al., 2004)
 - 5-minute telephone conversations between strangers on a given topic
- The Philadelphia Neighborhood Corpus (Labov & Rosenfelder, 2011)
 - Sociolinguistic interviews carried out by Penn Linguistics students

dependent variable

dependent variable

contracted

uncontracted

dependent variable

contracted

is

[z], [s]

uncontracted

[IZ], [ƏZ]

(MacKenzie 2012)

is

has

dependent variable

contracted	uncontracted
[z], [s]	[IZ], [ƏZ]
[z], [s]	[hæz], [həz], [əz]

(MacKenzie 2012)

dependent variable

	contracted	uncontracted
is	[z], [s]	[IZ], [ƏZ]
has	[z], [s]	[hæz], [həz], [əz]
will	[əl]	[wɪl], [wəl]

(MacKenzie 2012)

independent variables

independent variables

length of subject in orthographic words

independent variables

length of subject in orthographic words **Salzburg**'s nice

1

independent variables

length of subject in orthographic words

<u>Salzburg</u> 's nice			
The real estate out here's been pretty good	4		

independent variables

length of subject in orthographic words

Salzburg's nice	1
The real estate out here's been pretty good	4
About the only thing I can do mechanically	with
a, a car is put gas in it	12

independent variables

length of subject in orthographic words is only: preceding vowel vs. consonant

independent variables

length of subject in orthographic words

is only: preceding vowel vs. consonant

is only: following grammatical class

Subject length effect

Some conditions on contraction do resemble conditions on categorical alternations

Some conditions on contraction do resemble conditions on categorical alternations

 e.g. preceding segment: compare Korean allomorphy

Some conditions on contraction do resemble conditions on categorical alternations

 e.g. preceding segment: compare Korean allomorphy

But, subject length is different:

Some conditions on contraction do resemble conditions on categorical alternations

 e.g. preceding segment: compare Korean allomorphy

But, subject length is different:

 "Grammars can't count": categorical alternations don't make reference to quantities larger than 2 (Selkirk 1986)

Some conditions on contraction do resemble conditions on categorical alternations

 e.g. preceding segment: compare Korean allomorphy

But, subject length is different:

- "Grammars can't count": categorical alternations don't make reference to quantities larger than 2 (Selkirk 1986)
- Yet auxiliary realization appears to be sensitive to precise subject word count

Tendency for a recently-used linguistic form to be used again

Tendency for a recently-used linguistic form to be used again

Variable (A) with two variants /X/ and /Y/:

Tendency for a recently-used linguistic form to be used again

Variable (A) with two variants /X/ and /Y/:

Subset of the PNC: 42 white speakers

Subset of the PNC: 42 white speakers

Birth year	Female	Male
Before 1930	5	5
1930–1959	11	10
After 1959	5	6

Subset of the PNC: 42 white speakers

Birth year	Female	Male
Before 1930	5	5
1930–1959	11	10
After 1959	5	6

Both DH and ING known to be stable in Philadelphia (Labov 2001)

Variables

Variables

ING: alternation between unstressed /ıŋ/ and /ın/ (working/workin')

proper nouns excluded

Variables

ING: alternation between unstressed /ıŋ/ and /ın/ (working/workin')

proper nouns excluded

DH: alternation between fricative /ð/ and stop /d/ word-initially (this/dis)

- intermediate affricate variant included with fricative
- deletions excluded ('em)
- lexical item the excluded
- neutralized following apical stops

Each token coded for value of previous token

Each token coded for value of previous token

Distance from previous token measured in seconds and log-transformed

Each token coded for value of previous token

Distance from previous token measured in seconds and log-transformed

Previous tokens not coded across interruption by interlocuter

Persistence effect on ING

Persistence effect on DH

Persistence effect: implications

Persistence effect: implications

Like contraction, ING and DH conditioned by linguistic factors in ways that look like categorical rules

e.g. following segment: compare Yiddish voicing

Persistence effect: implications

Like contraction, ING and DH conditioned by linguistic factors in ways that look like categorical rules

e.g. following segment: compare Yiddish voicing

But again, persistence is different:

- Conditions on allomorphy and phonological rules are locally-constrained (Embick 2010)
- Highly non-local; in effect for over a minute

Subject length effect would require grammar to count

Subject length effect would require grammar to count

Persistence effect would require grammar to have a memory

Subject length effect would require grammar to count

Persistence effect would require grammar to have a memory

Would need to constrain grammar to **not** allow such effects to operate on categorical processes if they were represented grammar-internally

Modeling variation

Grammar

2 Use

Conclusion

Surface probabilities reflect variation originating within and outside of the grammar.

Thank you!