Modulation of the following segment effect on coronal stop deletion

Meredith Tamminga University of Pennsylvania

> October 23, 2015 NWAV 44 - Toronto

The following segment effect

...on deletion of word-final coronal stops in consonant clusters

The following segment effect

- Labov et al 1968; Wolfram 1969; Fasold 1972; Guy 1980, 1991a, 1991b; Santa Ana 1991; Jurafsky et al. 2001; Bybee 2002; Tagliamonte & Temple 2005; Hazen 2011; Fruehwald 2012; Tamminga 2014; Tanner et al. 2015
- Following Guy 1991a,b and Tanner et al. 2015: the following segment effect is malleable
- Different approaches to coronal stop deletion make different predictions about how other factors interact with the following segment effect

The following segment effect

- Assess three hypotheses that follow from different approaches to coronal stop deletion:
 - Following segment effect interacts with speech rate
 - Following segment effect interacts with lexical identity and frequency
 - Following segment effect interacts with syntactic structure

Predictions:

- Faster speech has more deletion
- Faster speech exaggerates the effect of a following consonant

Why?

 Fast speech compresses the time allotted to gestures, leading to overlap that is perceived as deletion

Why?

 Fast speech compresses the time available for gestures, leading to overlap that is perceived as deletion

Why?

 Fast speech compresses the time available for gestures, leading to overlap that is perceived as deletion

Interaction with lexical frequency

Predictions:

- Higher frequency words have more deletion
- Words that occur more before vowels have more retention
- Vowel-context bias is stronger in higher frequency words

Interaction with lexical frequency

Why?

• If a word has more pre-vowel than pre-consonant tokens in its exemplar cloud, and retention is higher before vowels, then overall the cloud will have more retention

Interaction with lexical frequency

Why?

 In exemplar-theoretic models, allophonic biases accrue more rapidly in high-frequency words than lowfrequency ones

Interaction with syntactic structure

Predictions:

Interaction with syntactic structure

Why?

• New clause not always planned in time for the following segment to affect the variable outcome

Interaction with syntactic structure

Why?

• New clause not always planned in time for the following segment to affect the variable outcome

The deletion data

Sociolinguistic interviews with 106 white speakers (61 f, 45 m) from Philadelphia Neighborhood Corpus

The deletion data

938 auditorily-coded observations of 73 word types that:

- Contain a final homovoiced cluster (Wolfram 1969)
- Are monomorphemic (Guy 1991a,b)
- Are monosyllabic
- Are content words
- Have a following vowel or non-approximant consonant

Restricted to avoid many-way interaction terms

First pass:

```
retention ~

speaker gender +

preceding segment +

following segment * normalized speech rate +

vowel-context bias * log word frequency +

following segment * clause boundary
```

	Estimate	Std. error	<u>z-value</u>	<u>p-value</u>
Intercept	-1.34	1.77	-0.757	0.449
Male speaker	-0.11	0.16	-0.72	0.470
Following vowel	3.68	0.25	14.64	< 2e-16
Clause-final	0.27	0.54	0.51	0.610
Preseg	•••	•••	•••	n.s.
Norm. speech rate	-0.16	0.11	-1.42	0.155
V-context bias	1.45	2.23	0.65	0.515
Log word frequency	-0.08	0.20	-0.41	0.684
Fol.V : clause-final	-1.46	0.59	-2.49	0.013
Fol.V : speech rate	0.03	0.13	0.22	0.823
V-bias : word freq	-0.10	0.25	-0.41	0.679

Take two:

retention ~

speaker gender +

preceding segment +

normalized speech rate +

vowel-context bias +

log word frequency +

following segment * clause boundary

	Estimate	Std. error	<u>z-value</u>	<u>p-value</u>
Intercept	-0.71	0.89	-0.79	0.428
Male speaker	-0.11	0.16	-0.69	0.489
Following vowel	3.68	0.25	14.68	<2e16
Clause-final	0.25	0.53	0.47	0.64
Preseg	•••	•••	• • •	•••
Norm. speech rate	-0.14	0.05	-2.66	0.008
V-context bias	0.56	0.45	1.22	0.221
Log word frequency	-0.16	-0.08	-2.07	0.039
Fol.V: clause-final	-1.42	0.57	-2.48	0.013

- Why the asymmetry between pre-V and pre-C contexts?
- Suggests syllabification as the source of the following segment effect (Guy 1991a)
- Can't be captured as clause boundaries blocking syllabification because other processes require syllabification across clause boundaries
- Consistent with predictions based on productionplanning effects on phonological variation (Wagner 2012, MacKenzie 2012, Tanner et al. 2015)

- Syllabification prevents deletion, giving rise to at least part of the following segment effect
- Unplanned clauses sometimes prevent syllabification, facilitating deletion by forcing the stop to remain in a coda position

• Fun speculation: if the following segment effect is entirely a product of syllabification, then the difference between retention rates in pre-V and pre-C contexts across clause boundaries could represent an estimate of the rate at which the following clause is not yet planned...

Conclusions

- Production planning is neither a social constraint nor an internal linguistic one
- Rather, what Tamminga, McKenzie & Embick (forthcoming) call a "p-conditioning" factor: psychological and physiological effects
- Understanding why the following segment effect is sensitive to syntactic boundaries requires making reference to psycholinguistic processes

Thank you!

And thanks to Bill Labov and Dave Embick for their comments on this analysis.

Email me: tamminga@ling.upenn.edu

References

- Bybee, J. 2002. Word frequency and context of use in the lexical diffusion of phonetically conditioned sound change. *Language Variation and Change* 14: 261-290.
- Browman, C & L Goldstein. 1992. Articulatory phonology: An overview. Phonetica 49(3/4):155-180.
- Fasold, R. 1972. Tense marking in Black English: A linguistic and social analysis. Washington, D.C: Center for Applied Linguistics.
- Fruehwald, J. 2012. Redevelopment of a morphological class. Penn Working Papers in Linguistics 18(1):77-86.
- Guy, G. 1980. Variation in the group and the individual: The case of final stop deletion. In W. Labov (ed.), Locating language in time and space. New York: Academic Press. 1–36.
- Guy, G. 1991. Contextual conditioning in variable lexical phonology. Language Variation and Change 3:223–239.
- Guy, G. 1991. Explanation in variable phonology: An exponential model of morphological constraints. Language Variation and Change 3:1-22.
- Hazen, K. 2011. Flying high above the social radar: Coronal stop deletion in modern Appalachia. Language Variation and Change 23:105-137.
- Jurafsky, D, Bell, A, Gregory, M, & Raymond, W. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. In J. Bybee & P. Hopper (eds.), Frequency and the emergence of linguistic structure. Amsterdam: John Benjamins Publishing Company. 229–254
- Labov, W, P. Cohen, C. Robins, & J. Lewis. 1968. A study of the Non-Standard English of Negro and Puerto Rican speakers in New York City, Vols. 1 & 2. United States Office of Education Final Report, Research Project 3288 [ERIC ED028423 and ED028424].
- MacKenzie, L. 2012. Locating variation above the phonology. PhD dissertation, University of Pennsylvania.
- Pierrehumbert, J. 2002. Word-specific phonetics. Laboratory Phonology VII. Mouton de Gruyter.
- Santa Ana, O. 1991. Phonetic simplification processes in the English of the barrio: a cross-generational sociolinguistic study of the Chicanos of Los Angeles. PhD dissertation, University of Pennsylvania.
- Tagliamonte, Sali, & Temple, Rosalind. (2005). New perspectives on an ol' variable: (t,d) in British English. Language Variation and Change 17(3):281–302.
- Tamminga, M. 2014. Persistence in the production of linguistic variation. PhD dissertation, University of Pennsylvania.
- Tamminga, M, L. MacKenzie & D. Embick. Forthcoming. The dynamics of variation in individuals. In Linguistic Variation, special issue on the Locus of Linguistic Variation.
- Tanner, J, M. Sonderegger, & M. Wagner. 2015. Production planning and coronal stop deletion in spontaneous speech. ICPhS Glasgow.
- Wagner, M. 2012. Locality in phonology and production planning.
- Wolfram, W. (1969). A sociolinguistic description of Detroit Negro speech. Washington, DC: Center for Applied Linguistics.